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Researchers are increasingly using machine learning to study physiological markers of emotion. We
evaluated the promises and limitations of this approach via a big team science competition. Twelve
teams competed to predict self-reported affective experiences using a multi-modal set of peripheral
nervous system measures. Models were trained and tested in multiple ways: with data divided
by participants, targeted emotion, inductions, and time. In 100% of tests, teams outperformed
baseline models that made random predictions. In 46% of tests, teams also outperformed baseline
models that relied on the simple average of ratings from training datasets. More notably, results
uncovered a methodological challenge: multiplicative constraints on generalizability. Inferences
about the accuracy and theoretical implications of machine learning efforts depended not only on
their architecture, but also how they were trained, tested, and evaluated. For example, some teams
performed better when tested on observations from the same (vs. different) subjects seen during
training. Such results could be interpreted as evidence against claims of universality. However, such
conclusions would be premature because other teams exhibited the opposite pattern. Taken together,
results illustrate how big team science can be leveraged to understand the promises and limitations
of machine learning methods in affective science and beyond.

1. Introduction
All throughout their lives, people experience phenomenological states they call ‘emotions’ [1]. For at
least a century, researchers have been interested in the extent to which these emotional states have
physiological markers. For an emotion artificial intelligence (AI) industry recently valued at $20+
billion [2], these physiological markers may be the key to creating technology that can unobtrusively
track and respond to humans’ emotions. For emotion theorists, these physiological markers may
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provide fundamental insights into the nature of emotions themselves. For example, many theorists
posit that emotional experience has a physiological basis, often suggesting that it is partially or fully
built off afferent feedback from the peripheral nervous system [3–18]. If true, such accounts provide
clues not only about how emotional experiences arise but also about why such a capacity evolved (e.g.
to monitor and regulate physiological states) [4,19].

Over the past couple of decades, researchers have increasingly turned to machine learning methods
to capture, study and debate the nature of emotion physiology [20–25]. In the present work, we
evaluated the promises and limitations of this approach via a big team science competition. The
competition focused on modelling physiological markers of the most elementary component of
emotional experience: core affective feelings of valence (pleasantness versus unpleasantness) and
arousal (often defined as strength of physiological activity or level of energy) [26]. By crowdsourcing
this task, we sought to efficiently identify and probe particularly promising approaches to capturing
links between physiology and affective experiences. We further sought to do so in a manner that
establishes a high degree of commensurability (i.e. comparability). To do so, we had researchers commit
to the same sets of training, testing and evaluation procedures. Simultaneously, we examined the
impact of non-commensurability by systematically varying many of these methodological decisions—
i.e. having researchers engage with multiple training, testing and evaluation frameworks.

Our examination of commensurability was motivated by reviews indicating a general lack of
commensurability in many machine learning efforts focused on emotion physiology [20]. As an
illustrative example, consider the challenges of comparing two simple but influential studies by Picard
et al. [27] and Haag et al. [28] (table 1).

On one hand, Picard et al. [27] (i) used peripheral nervous system data from a single participant
who completed an emotion self-elicitation task (e.g. guided imagery) to (ii) predict which of eight
emotions were targeted by the task. They (iii) defined accuracy as the percentage of times the model
correctly predicted which emotion was targeted, and (iv) tested their model using leave-one-out
cross-validation. In this validation approach, data are divided into multiple non-overlapping sets that
are iteratively used to train and test models. Using this approach, Picard et al. [27] concluded that their
model achieved 81% classification accuracy.

On the other hand, Haag et al. [28] (i) used peripheral nervous system data from a single participant
who viewed emotional photos, to (ii) predict how other participants rated those photos. They (iii)
defined accuracy as the percentage of times the predicted value fell within a range of ratings from
other participants, and (iv) tested their model using hold-out validation. In this validation approach,
data are divided into two sets, one for training and one for testing. Using this approach, Haag et al. [28]
concluded 90% and 97% accuracy for predicted valence and arousal reports, respectively.

In this illustrative example, it is tempting to conclude that Haag et al. improved upon Picard et al.’s
work—or, more broadly, that the field’s methods for capturing links between emotion and physiology
are improving. However, such claims are difficult to substantiate owing to a lack of commensurability:
the two teams used different datasets, outcomes, performance benchmarks and model validation
procedures [20,29]. It is certainly possible that Haag et al. [28] developed a superior model. However, it
is also possible that they studied a simpler emotional context (emotional photos versus self-elicitation),
focused on a simpler outcome (core affect prediction versus discrete emotion classification), used a
more liberal benchmark (falling within a range of observer ratings versus identifying the targeted
emotion) and/or used more rigorous testing procedures (hold out versus leave-one-out cross-valida-
tion).

If incommensurability makes it difficult to compare the performance of two machine learning
efforts, it is perhaps not surprising that it also confounds attempts to connect such work to theory.
Researchers are increasingly using machine learning methodology to weigh in on century-old debates
about emotion, e.g. whether underlying patterns are biologically innate, emotion specific, similar
across contexts and stable throughout the course of an emotional event [30]. Yet, one possibility is that
machine learning researchers reach different conclusions about connections to theory simply because
they approach the questions in different ways [31]. The present work evaluates such a possibility by
systematically varying training, testing and evaluation procedures in a machine learning challenge
involving 12 groups of researchers.
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2. Methods
For the competition, we used the Continuously Annotated Signals of Emotion dataset [32]. This dataset
contains moment-to-moment measures of affective experience and multi-modal physiology from 30
volunteer subjects recruited from the Institute of Robotics and Mechatronics in Germany (15 males, age
28.6 ± 4.8 years and 15 females, age 25.7 ± 3.1 years). These subjects encountered two video inductions
of fear, boredom, relaxation and amusement. In total, there were eight inductions, each 2−3 min in
length. These videos were initially selected based on their use in prior research, but participants’ affect
reports provided further evidence of their effectiveness as emotion inductions [32].

Throughout the video inductions, participants used a joystick to navigate a continuous, 9-point,
two-dimensional grid measuring valence (i.e. pleasantness versus unpleasantness) on the x-axis and
arousal (i.e. low energy versus high energy) on the y-axis. Simultaneously, multi-modal peripheral
nervous system measurements were collected: electrocardiography, blood volume pulse, electrodermal
activity, respiration, skin temperature and electromyography activity over the zygomaticus major,
corrugator supercilii and trapezius muscles. Notably, both the affect reports and peripheral nerv-
ous system signals were collected moment-to-moment (20 and 1000 samples s−1, respectively). This
provided teams with a large set of observations with high temporal resolution. For each participant,
the original dataset contained approximately (i) 25 401 valence and arousal reports and (ii) 1 270 083
recordings of peripheral nervous system activity. Using these observations, teams were challenged to
use peripheral nervous system features to predict affect reports via their preferred machine learning
methodology.

2.1. Teams
For the competition, we sought to recruit up to 15 teams based on the availability of funds. Teams
were eligible to participate if they agreed to (i) make their code openly available, (ii) collaborate on
a manuscript describing the challenge results, and (iii) not cheat (e.g. look for the original dataset).
Eighteen teams completed the application to join the challenge, which asked them to report previous
experience with machine learning challenges, the number of papers published in this domain, their
planned approach to the challenge and the CV of members of their teams. The competition organizers
selected teams based on averaged ratings of their (i) experience with machine learning challenges
(N.A.C.), (ii) expertise in emotion research (M.B.) and/or (iii) planned approach to the challenge (S.S.).
These evaluations were made independently and then discussed as a group. Of the 15 teams that were
invited to compete, three dropped out owing to difficulties encountered during the challenge. In total,
12 teams completed the challenge, using a variety of modelling approaches (electronic supplementary
material, table S1) [33–35].

Table 1. Past efforts to use machine learning to predict emotion reports from physiology are difficult to compare. (For example, Picard
et al. [27] and Haag et al. [28] used different datasets, outcomes, benchmarks and testing procedures. The present work standardizes
and/or systematically varies those methodological details.)

citation dataset outcome benchmark testing procedure

Picard et al. [27] n = 1 subject completes
emotion self-
elicitation task

emotion targeted by the
self-elicitation task

percentage of times the
model correctly
predicted which
emotion was
targeted

leave-one-out cross-
validation

Haag et al. [28] n = 1 subject views
emotional photos

external ratings of
emotional photos

percentage of times
predicted value fell
within a range of
the external ratings

hold out validation

present work with
12 teams

n = 30 subjects view
emotional videos

self-reported affect absolute prediction
error (compared to
two baseline
models)

across-subject, -emotion,
-induction and -time
validation
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Teams received $300 for completing the competition. Those who developed approaches judged
to be the most promising received a $200 bonus. This payment structure was designed to balance
incentives for effort ($300 for all teams) and performance ($200 for most promising approaches).
To subjectively identify the most promising approaches, two competition organizers (S.S. and B.P.)
worked together to examine (i) how well the teams performed by inspecting their root mean square
error, and (ii) if top performing, their underlying code. This two-step process allowed us to consider
performance, perceived methodological soundness and reproducibility when choosing which models
to further evaluate. This allowed us to efficiently select promising models for follow-up investigations:
a selection process that helps conserve resources consumed by large-scale machine learning efforts
[36].

2.2. Model training and testing
There were no constraints on how teams were instructed to model the data. For example, some teams
deployed relatively simply tree-based ensemble models, whereas others deployed relatively complex
deep learning techniques (electronic supplementary material, table S1).

To explore the implications of decisions about model training and testing, we examined four
different approaches (figure 1):

(i) for across-subject validation, we used leave-N-subjects-out validation (figure 1a). Participants were
randomly divided into five folds. Teams trained models on four folds and tested models on a
fifth fold. This was repeated for each combination of folds;

(ii) for across-emotion validation, we used a leave-one-emotion-out validation approach (figure 1c). As
a reminder, four emotions were targeted (via videos) in the original dataset: amusement, fear,
boredom and relaxation. We created one fold for each targeted emotion (four folds total). Teams
trained models on data from three targeted emotions and tested models on data from a fourth
targeted emotion. This was repeated for each combination of folds;

Figure 1. Overview of the four validation approaches. (a-c) Data were divided into subsets (folds). Models were iteratively trained on
one set of folds (white) and tested on the remaining fold (yellow). (d) Models were trained on the beginning of all inductions and
tested on later parts of the inductions.
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(iii) for across-induction validation, we used a leave-one-video-out validation approach (figure 1b). As
a reminder, each targeted emotion was induced through two different videos. For each targeted
emotion, teams trained models on data from one video and tested models on data from the
second video; and

(iv) for across-time validation, we used a hold-out validation approach focused on chronology (figure
1d). For each participant, we divided the data from each emotion induction into training and
test sets based on time. Teams trained models on data from the beginning of the inductions and
tested the models on data from the later parts of the inductions.

Notably, the four validation approaches represent what researchers might do to evaluate theoreti-
cal debates about the extent to which links between peripheral nervous system activity and affec-
tive experience are biologically innate (across-subject validation), emotion specific (across-emotion
validation), similar across contexts (across-induction validation) and stable throughout the course of an
emotional event (across-time validation) [30].

Test data files contained 30 s of affect reports (removed during testing) and their corresponding
physiological recordings. Test data files also contained 10 s of physiological recordings that preceded
and succeeded the affect report window. This allowed teams to potentially use short periods of past
and future physiological data to predict affect reports. Teams were permitted to build different models
for different validation approaches. Before submitting their models for evaluation on the final set
of test data, teams were allowed to conduct up to three preliminary tests on a subset (50%) of test
data. This approach is often used in machine learning to prevent overfitting on training data, thus
promoting the generalizability of the models. Eight teams conducted these preliminary tests (see the
electronic supplementary material, table S1).

The outcome of interest was the absolute value of the prediction error for self-reports of valence
and arousal. We chose to focus on self-reports because it most closely maps onto a central construct of
interest in emotion research: the experience of affective states. Prediction error was estimated separately
for valence and arousal reports and then summed. To examine the impact of decisions about bench-
marking, we compared teams to two simple baseline models: (i) a random baseline model that made
random (within the range of the measure) predictions about self-reported valence and arousal reports;
and (ii) a mean baseline model that uniformly predicted each rating based on the observed mean in
the training dataset. However, other baseline models could certainly be considered, such as ones that
calculate tailored subject-specific mean ratings, preserve first-order signal statistics and/or constrain
continuity, temporal variability and autocorrelation.

For the three models judged to be the most promising, follow-up tests were conducted to evaluate
the extent to which the models used peripheral nervous system features. For these tests, the peripheral
nervous system data in the testing files were replaced with simulated physiological randomness: N(μ =
0, σ = 1).

3. Results
To examine each team’s accuracy, we used mixed-effect regression. Mixed-effect regression is a robust
analytic approach that can be used to accommodate non-independent observations, which often lead
to inflated error rates in traditional linear regression or data loss when averaged to avoid non-inde-
pendence [37–39]. For each team, we regressed absolute prediction error as a function of: (i) whether
the prediction came from a model developed by the team, the random baseline model or the mean
baseline model; (ii) the validation approach used for testing; (iii) a higher-order interaction between
model source and validation approach; and (iv) random intercepts for each subject and video in the
dataset. Random intercepts were included to accommodate non-independent observations from the
same participants and videos. For each validation approach, we used model-derived pairwise contrasts
to estimate and test the significance of the mean difference (MD) in the absolute prediction error
between the model developed by the team and each baseline model.

As illustrated in figure 2a, inferences about how well teams modelled affect reports depend on
which baseline model is considered. When compared to a random baseline model, every team in every
validation scenario had more accurate predictions (1.90 < MD > 0.48, all z > 130.76, all p < 0.001).
However, teams did not always make more accurate predictions than a mean baseline model. Seven
teams (58%) outperformed the mean baseline model in across-subject (0.50 < MD > 0.008, all z > 2.54,
all p < 0.05) and across-time validation (0.74 < MD > 0.018, all z > 5.36, all p < 0.001); five teams (42%)
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outperformed the mean baseline model in across-emotion validation (0.71 < MD > 0.02, all z > 6.01, all
p < 0.001); and three (25%) teams outperformed the mean baseline model in across-induction validation
(0.52 < MD > 0.23, all z > 64.20, all p < 0.001).

As further illustrated in figure 2b, the manner in which prediction accuracy varied across validation
approaches differed across teams. For example, team 1 achieved lower prediction error in across-sub-
ject versus across-time validation. Team 4 exhibited the opposite pattern. These results highlight
how constraints on generalizability are multiplicative. Inferences depended on the interactive effect
of decisions about (i) what models to deploy and (ii) how to evaluate those models.

3.1. Further evidence of the role of peripheral nervous system activity
The above results are consistent with previous claims that machine learning models can capture links
between peripheral nervous system activity and affect reports [40,41]. However, although the models
always outperformed random guessing, they did not always outperform a mean baseline model
that uniformly predicted affect ratings as the mean of the ratings observed in the training dataset
(figure 1a). This raises questions about the extent to which the models’ predictions were driven by
the recovery of (i) theory-relevant links between peripheral nervous system activity and affect reports
versus (ii) theory-irrelevant averages of affect reports in the training dataset.1

One benefit of big team science is that it can be used to efficiently identify and probe particularly
promising models. To further investigate the role of peripheral nervous system activity, competition
organizers reviewed the openly available code for top-performing submissions and [subjectively]
chose three that seemed particularly promising. The teams’ models were then re-tested on the same
data with one change: measures of peripheral nervous system activity were replaced with simulated
physiological randomness (figure 3a).

Using mixed-effect regression, we regressed each of the three team’s absolute prediction error as
a function of (i) the validation approach used for testing, (ii) whether the test data contained real or
simulated physiological randomness, (iii) a higher-order interaction between validation approach and
whether the physiology input was real, and (iv) random intercepts for each subject and video in the
dataset. In all but one case (MD = 0.00, z = −1.07, p = 0.29), the teams’ prediction accuracy decreased
when tested on simulated physiological randomness (−0.33< MD > −0.018, all z < −6.96, all p < 0.001;
figure 3). In other words, accuracy decreased in 93% of tests with simulated physiological randomness.
These results provide evidence that most—but not all—high-performing models actually relied on the
provided peripheral nervous system signals to predict affect reports. However, results also highlight
the limits of what models learned from physiology, with real physiology only improving affect report
predictions by a maximum of 0.33 points (on a 9-point scale).

4. Discussion
Taken together, the results of our big team effort reveal both the promises and limitations of machine
learning efforts to model potentially complex physiological markers of affective experience. In four
tests, models developed by 12 teams of researchers uniformly achieved higher accuracy than what
would be expected by mere random guessing. About half the time, accuracy was also higher than
what would be expected by merely using mean ratings from training datasets. Further evidence of the
role of peripheral nervous system activity comes from follow-up tests with simulated physiological
randomness, which nearly uniformly caused models from three selected teams to become less accurate.
However, the magnitude of differences in prediction accuracy in many tests was small, illustrating
extensive opportunity for future improvements.

1One challenge with connecting machine learning to theoretical debates about emotion physiology is model interpretability; i.e. it is
unclear if successful predictions are driven by (i) theory-relevant links between peripheral nervous system and affect reports, and
(ii) theory-irrelevant averages of affect reports in the training dataset.To illustrate this point, consider a classic linear regression
context. Even without modelling physiology-related parameters, an intercept-only regression can often make reasonable predictions
about participants’ affect ratings (if mean affect ratings captured by the model intercept are similar in training and test data). To
more specifically make claims about physiology, linear links between physiology parameters and affect ratings would be formally
modelled and inspected.Unlike linear regression, many machine learning methods (e.g. deep learning) do not fit interpretable
parameters. Thus, researchers often need to deploy supplemental investigations to substantiate claims about what their models
learned (if anything) about emotion physiology.
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More centrally, however, our results underscore challenges that past and future researchers face
with commensurability and generalizability in research that seeks to use machine learning to predict
and understand emotion [42,43]. Our results indicate that differences in how models are developed,
benchmarked and tested can impact researchers’ conclusions. For instance, focusing on a random
baseline (versus mean baseline) leads to a more optimistic interpretation of models’ accuracy—as
does focusing on across-time validation (versus, e.g. across-emotion validation). These results have
implications for ongoing discussions about the potential benefits (e.g. unobtrusive measurement of
internal emotional states) and harms (e.g. inaccurate predictions) of emotion recognition technologies
[44–47], such as those being pursued by a $20+ billion emotion AI industry [2].

Even more challenging is our observation that constraints on generalizability can be multiplicative
(i.e. interactive) [43,48]. For example, the accuracy of predictions depended both on the modelling and
validation approaches. However, it is inadvisable to make broad conclusions about the impact of any
one of these decisions because they appeared to have an interactive effect on prediction accuracy. For
example, team 1 achieved lower prediction error in across-subject versus across-time validation. Some
researchers may be tempted to conclude that this provides evidence that links between peripheral
nervous system activity and affect reports vary more within- versus between-persons. This conclusion,
if true, would bolster claims that such links are biologically innate [49], but perhaps sensitive to
context. This conclusion would also suggest that future research should focus less on the diversity of
the sampled population and more on the diversity of the emotional contexts they encounter. However,

Figure 2. Differences in how machine learning models are developed, benchmarked and tested interactively shape conclusions about
their ability to predict affect reports from physiology. (a) Absolute error of affect report predictions (y-axis) made by 12 teams’ models
(x-axis). Validation approaches (panels) are visualized separately. Models are compared to a random baseline (upper dotted line) and
mean baseline (lower dashed line). Note: p < 0.001 unless otherwise indicated; an asterisk denotes p < 0.05 for mean baseline
comparison; n.s. denotes p > 0.05 for mean baseline comparison. (b) Re-illustration of teams’ (panel) prediction error (y-axis) across
validation approaches (x-axis).
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such conclusions are premature when considering that differences in both modelling and validation
approaches have interactive effects on prediction accuracy. Indeed, models developed by other teams
(e.g. team 8) exhibited the opposite pattern: that prediction error is lower in across-time versus
across-subject validation. Such results could be interpreted as evidence against claims of biological
innateness and would underscore the importance of collecting diverse participant samples [50].

Multiplicative constraints on generalizability will be important to keep in mind as researchers
increasingly use machine learning not only to predict emotion—but also to evaluate theoretical claims
about its nature [31,51,52]. Our work focused on a specific theoretical issue in a specific methodological
context: whether there are detectable links between physiological states and core affective experien-
ces among participants in Germany in a stationary and controlled laboratory context. However, we
suspect that our observed multiplicative constraints on generalizability will apply to other theoretical
debates and methodological contexts in affective science. This includes debates about the number
and discreteness of emotion categories [53,54], the extent to which their physiological correlates are
invariant across different contexts and people [51], which physiological features (if any) are most
robustly associated with specific emotional states [54,55], the utility of using wearable sensors to track
emotional processes in non-laboratory contexts [20,56], and the performance of emotion recognition
models when exposed to entirely new contexts (e.g. contexts with completely new data,2 such as real
world contexts with ambulatory measures of physiology).

2When the competition was designed, the organizers searched for an external dataset with similar methodological characteristics
(moment-to-moment measures of core affect and a similar suite of physiological measures). Such efforts were not successful (even
after reaching out to the developers of the dataset that was used).

Figure 3. Three re-examined models typically exhibited less accuracy when re-tested on simulated physiological randomness. (a)
Example of real electrocardiography signal versus simulated physiological randomness. (b) Absolute error of affect report predictions
(x-axis) made by models developed by three teams (y-axis) when tested on real physiology (circle) versus simulated physiological
randomness (crossed circle). Results are visualized separately for four validation approaches (panels). Significance levels correspond to
mean differences in performance when a model was tested on real versus simulated physiological randomness. Note: ***p < 0.001.
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Although our work highlights challenges with commensurability and multiplicative constraints on
generalizability, it also provides proof-of-concept for a potential methodological response: big team
science [57–61]. Big team science effectively allowed us to use the wisdom-of-crowds to evaluate a
fundamental theoretical question in affective science. Standardizing methodological decisions about
data sources, benchmarks and testing procedures permitted cleaner comparisons of teams’ different
approaches. Further introducing systematic variation in specific methodological decisions (e.g. testing
procedures) allowed us to empirically examine the extent to which these decisions constrain the
generalizability of inferences. Finally, requiring that teams make their materials and code openly
available allowed us (and future researchers) to further inspect teams’ models, reproduce their
solutions and identify approaches that seem most promising for follow-up research [62]. For example,
although our analyses did not investigate the impact of specific methodological decisions, this remains
a promising goal for future research.

Our examination of the use of big team science in machine learning research on emotion also
yielded lessons about ways that future collaborative efforts can be improved and expanded. For
instance, feasibility constraints prohibited the competition organizers from closely examining the code
for all submissions, performing comprehensive evaluations of model behaviour and working closely
with teams to navigate potential disagreements about the appropriateness of their methodology [63].
Expanding upon current guidelines for crowdsourced model development [64], developing protocols
and best practices for peer code review could have better enabled the crowdsourcing of this task [65–
68]. Such protocols, for example, could help researchers examine whether specific decisions predict
variability in the results of machine learning efforts [69]. Teams that entered the competition also
faced resource constraints, with many expressing that they would have benefited from (i) more time
to work on the challenge, (ii) datasets with more peripheral nervous system measures, observations
and cultural variability, and/or (iii) access to more powerful computing resources. Recent pushes to
collaborate on dataset development [57–60] and provide access to shared computing resources [70]
may prove instrumental in helping researchers overcome those barriers.

Despite existing constraints, our work raises an exciting possibility: advancements in machine
learning and collaborative research methods provide researchers with new tools for tackling ultra-com-
plex questions in affective science and beyond. However, when doing so, researchers will have to
grapple with multiplicative constraints on generalizability.
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